球盟会

产品介绍

方案描述

在整体方案中,分为刀片计算节点、胖节点、异构加速计算节点、管理登录节点以及高性能并行存储系统。

高性能存储系统主要采用IB网络与各个计算节点互联,IPMIN网络和以太网则用于管理和业务系统。

应用行业

数值模拟(电磁、微波、雷达)应用

经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。

这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。

当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。

材料化学应用

分子模拟,是指利用理论方法与计算技术,模拟或仿真分子运动的微观行为,广泛的应用于计算化学,计算生物学,材料科学领域,小至单个化学分子,大至复杂生物体系或材料体系都可以是它用来研究的对象。随着计算机技术的发展和物理,化学理论知识的不断进步,高性能计算机现在已经广泛应用于研究分子性质,开发新材料等一系列研究。从原理上而言,分子模拟主要分为两个方面,即基于第一性原理的量子化学模拟,以及基于经典力学的分子力学模拟等。当然,随着现在研究体系的不断复杂化,以及人们对于计算结果精确度以及准确度的不断提升,一些交叉学科,例如第一性原理的分子动力学等综合了量化模拟和分子模拟长处的新的研究方法也开始逐渐出现。

计算化学应用

计算化学(computational chemistry)是理论化学的一个分支。计算化学的主要目标是利用有效的数学近似以及电脑程序计算分子的性质(例如总能量,偶极矩,四极矩,振动频率,反应活性等)并用以解释一些具体的化学问题。计算化学这个名词有时也用来表示计算机科学与化学的交叉学科。理论化学泛指采用数学方法来表述化学问题,而计算化学作为理论化学的一个分支,常特指那些可以用电脑程序实现的数学方法。计算化学并不追求完美无缺或者分毫不差,因为只有很少的化学体系可以进行精确计算。不过,几乎所有种类的化学问题都可以并且已经采用近似的算法来表述。理论上讲,对任何分子都可以采用相当精确的理论方法进行计算。很多计算软件中也已经包括了这些精确的方法,但由于这些方法的计算量随电子数的增加成指数

To Top